
The Functional Web
Editor: Steve Vinoski • vinoski@ieee.org

2 Published by the IEEE Computer Society 1089-7801/12/$31.00 © 2012 IEEE IEEE INTERNET COMPUTING

D espite numerous attempts to replace it,
JavaScript, for all practical purposes, is
the only language for the client-side Web.

Functional programmers targeting the Web will
almost certainly have to deal with JavaScript
at some time. Although writing functional pro-
grams in JavaScript is possible, it requires con-
siderable discipline and convention.

Recently, languages that compile to Java-
Script have surged in popularity (see http://
altjs.org for a list of some). The most popular is
Coffee Script (http://coffeescript.org), which sticks
closely to JavaScript’s semantics but greatly
changes its syntax. These changes make func-
tional programming a bit nicer and require less
discipline.

But sticking too closely to JavaScript’s seman-
tics keeps many of its warts. Even the biggest
JavaScript fans are quick to point out its flaws,
many of which float around the loose typing
and scoping rules.

After working on browser-based and node.js-
based software and being unable to fully rea-
son about typing rules, I decided to look at alter-
native approaches to writing JavaScript code.

I evaluated compilers that take Haskell or ML
and output JavaScript. These systems have large
runtimes and unreadable JavaScript output,
and make it hard to interoperate with existing
JavaScript. From my trials, I had a strong feel-
ing that the JavaScript community would never
embrace them.

But CoffeeScript is starting to gain traction
in the JavaScript community — in part because it
compiles to readable JavaScript. It also includes
a distinct compilation step, where it can include
a static type-checking phase. CoffeeScript pro-
grams can’t be completely type-checked due
to semantics of the language — type-checking

is only feasible in a language with restricted
semantics.

So, I was looking for a language that was
statically-typed, functional, and had light-
weight, readable JavaScript output. No language
seemed to satisfy all of these properties, so
I started work on Roy.

Roy’s Solution
I built Roy specifically to target JavaScript. This
means Roy’s compiler should know about Java-
Script’s primitives. Table 1 shows Roy’s built-in
types, along with their JavaScript representa-
tions. The “structure” type uses structural typ-
ing as a form of inheritance, which I discuss
later.

Roy arrays are variable-length and homo-
geneous (they can only hold values of a single
type), whereas Roy tuples are fixed-length and
heterogeneous (each value can have a different
type). Roy’s type system uses Damas-Milner
type inference. This algorithm is global, which
means it works on a program without any type
annotations. It also tries to be as generic as
possible — you only have to write type annota-
tions to restrict what a function accepts.

Roy is also written in JavaScript, which lets
it compile source code inside the browser and
execute it on the fly. This is particularly useful
during development.

Getting Started
Roy runs either on node.js or in the browser. If
you want to quickly play with Roy, you can try
the online compiler (http://roy.brianmckenna.
org). If you want to run Roy on node.js, it’s
available via npm (http://npmjs.org):

$ npm install roy

Roy
A Statically Typed, Functional Language
for JavaScript
Brian McKenna • Atlassian

IC-16-03-Funw.indd 2 3/15/12 4:34 PM

Roy

MAY/JUNE 2012 3

You can then compile and run a Roy
program with the following:

$ roy program.roy
$ node program.js

Or, you can use Roy’s read-eval-
print-loop (REPL) to start exploring
the language:

$ roy
Roy: Small functional

language that compiles to
JavaScript

Brian McKenna
<brian@brianmckenna.org>
(http://brianmckenna.org/)

:? for help
roy> 1 + 1
2 : Number
roy> "Hello world"
Hello world : String
roy>

Code Samples
Let’s generate some output:

roy> console.log (40 + 2)
42

The console.log function is built
into most JavaScript runtimes. Roy
doesn’t know about the console
object, so it just treats the log access
as untyped and emits the call. If we
run the previous segment, we’ll get
42 printed to the screen.

The type system is strong and
removes JavaScript’s coercion rules.
If we try to add a string and a number,
we instead get a compile-time error:

roy> console.log ("40" + 2)
Error: Type error: String is

not Number

This is a simple example of how Roy
can help us write programs with
fewer bugs — it can prove very sim-
ple inconsistencies.

We can define a function:

roy> let id x = x

This identity function just returns
the value that it receives. We can
use the :t directive to look at
the type:

roy> :t id
Function(#a, #a)

id is polymorphic in the x parameter —
we could pass in any type. If we
want to be more restrictive, we can
give an explicit type annotation:

roy> let f x: Number = x
roy> f 100
100 : Number
roy> f "100"
Error: Type error: String is

not Number

Each of the valid expressions com-
pi le into l ightweight , readable
JavaScript:

console.log(40 + 2);
var id = function(x) {
 return x;
};
var f = function(x) {
 return x;
};
f(100);

Structures
Roy implements structural typing.
We can view this as a static form of
duck typing. The top-most type is
{}, representing a structure with no
properties:

roy> let structures (x: {})
= x

All other structures are subtypes.
We can pass any structure to the
previous function:

roy> structures {property: 100}
{"property":100} : {}

Type-inference works on these
properties:

roy> let incrementAge
o = o.age + 1

roy> :t incrementAge
Function({age: Number},

Number)

We can see that it takes any
structure with a numeric age
property:

roy> incrementAge {name:
"Brian", age: 21}

22 : Number

One downside of structural typ-
ing is that you can get very long
error messages:

roy> let longInput x =
x.a + x.b + x.c

roy> longInput {a: 100,
b: 100, d: 200}

Error: Type error: {a: Number,
b: Number, d: Number} is not
{a: Number, b: Number,
c: Number}

Roy’s workaround is to allow type
aliasing:

roy> type Person = {firstName:
String, lastName: String}

Table 1. Roy’s built-in types, along with their JavaScript representations.

Roy JavaScript

Boolean Boolean

Number Number

String String

Structure Object

Array Array (homogeneous)

Tuple Array (heterogeneous)

Function Function

IC-16-03-Funw.indd 3 3/15/12 4:34 PM

The Functional Web

4 www.computer.org/internet/ IEEE INTERNET COMPUTING

Now we can give the alias as an
explicit parameter:

roy> let getName (x: Person) =
x.firstName ++ " " ++
x.lastName

roy> getName {firstName:
"Brian", lastName:
"McKenna"}

Brian McKenna : String

roy> getName {}
Error: Type error: {} is not

Person

Roy’s structures compile down to
plain JavaScript objects:

var structures = function(x) {
 return x;
};
structures({
 "property": 100
});
var longInput = function(x) {
 return x.a + x.b + x.c;
};
var getName = function(x) {
 return x.firstName + " " +

x.lastName;
};
getName({
 "firstName": "Brian",
 "lastName": "McKenna"
});

Tagged Unions
Roy supports tagged unions, in
which values are tagged with a con-
structor name. A type can contain
many alternative tagged values. To
define one, we use the data keyword:

roy> data ConsList a = Cons a
(ConsList a) | Nil

This generates a ConsList a type
with values created from two pos-
sible tags. From this definition, we
can construct a list:

roy> let empty = Nil
roy> let listOfOne = Cons 10

empty
roy> let listOfTwo = Cons 21

listOfOne
roy> listOfTwo
{"_0":21,"_1":{"_0":10,"_1":

{}}} : ConsList Number

The type parameter a is universally
quantified. We can’t cons a different
type:

roy> Cons "Hello!" listOfTwo
Error: Type error: String is

not Number

This code converts into JavaScript
that uses constructors to create
objects:

var Cons = function(a_0,
ConsList_1){

 this._0 = a_0;
 this._1 = ConsList_1;
};
var Nil = function(){};
var empty = new Nil();
var listOfOne = new Cons

(10, empty);
var listOfTwo = new Cons

(21, listOfOne);
listOfTwo;

Now that we have the data struc-
ture, we can write some functions
using pattern matching. The code
in Figure 1 uses the match keyword
to detect the value’s tag. In list-
IsEmpty, we detect whether the tag
is Cons. If so, the answer will be
false. If the tag is Nil, the answer
is true.

In listMap, we take out the val-
ues of each Cons. We run the given
function on the element and use
recursion on the rest of the list. The
listFilter function is similar but
uses the given function as a predi-
cate for reconstructing the element
or skipping it.

These combinators use Java-
Script’s instanceof checks for tags
(see Figure 2).

Monad Syntax
Many interesting data types and
control flows are monads. A monad
is something that can satisfy an
interface of two functions:

bind: Function(Monad #a,
Function(#a, Monad #b),
Monad #b)

return: Function(#a, Monad #a)

Monads must also satisfy certain
mathematical laws to truly be con-
sidered monads. Roy doesn’t check
these rules, so we’ll just ignore them
for now.

One example of monadic con-
trol flow prevalent in the JavaScript
world is continuation passing. I’ve read

roy> let listIsEmpty lst = match lst
...> case (Cons _ _) = false
...> case Nil = true
...>
roy> let listMap f lst = match lst
...> case (Cons x r) = Cons (f x) (listMap f r)
...> case Nil = Nil
...>
roy> let listFilter p lst = match lst
...> case (Cons x r) = if (p x) then
...> Cons x (listFilter p r)
...> else
...> listFilter p r
...> case Nil = Nil
...>

Figure 1. Higher-order functions on lists. We define these functions using
pattern matching.

IC-16-03-Funw.indd 4 3/15/12 4:34 PM

Roy

MAY/JUNE 2012 5

many JavaScript blog posts in which
people reinvent monads for their
node.js programs.

It’d be awesome if we had a
language that could make asyn-
chronous, continuation passing pro-
grams look less like callback hell.
For those unfamiliar with node.js,
callback hell is when code starts to
look like that in Figure 3. Notice that
the code is getting deeper, traveling
toward the right. Some advice is to
give names to these functions, but
I haven’t found this to be greatly
effective.

A lot of the same error-handling
code is mixed throughout the busi-
ness logic. It would be good if we had
a method for automatically includ-
ing error-processing rules.

The following code is based on
jQuery and won’t run in the command-
line REPL. You can instead give it
a try on the Roy website mentioned
previously.

let deferred = {
 return: \x -> $.when x
 bind: \x f ->
 let dfd = $.Deferred ()
 x.done (\val ->
 (f val).done (\val2 ->

dfd.resolve val2)
)
 dfd.promise ()
}

This defines a structure with return
and bind functions. This is how
Roy currently represents its monad
implementations. The dollar sign
($) is defined in jQuery, and we use
jQuery’s Deferred Object API to cre-
ate promises.

Now that we have this monad, we
can create pipelines:

let requests = do deferred
 text1 <- $.ajax "documents/

hello.txt"
 text2 <- $.ajax "documents/

world.txt"
 return text1 ++ text2

var listIsEmpty = function(lst) {
 return (function() {
 if(lst instanceof Cons) {
 return false;
 } else if(lst instanceof Nil) {
 return true;
 }
 })();
};
var listMap = function(f, lst) {
 return (function() {
 if(lst instanceof Cons) {
 var x = lst._0;
 var r = lst._1;
 return new Cons((f(x)), (listMap(f, r)));
 } else if(lst instanceof Nil) {
 return new Nil();
 }
 })();
};
var listFilter = function(p, lst) {
 return (function() {
 if(lst instanceof Cons) {
 var x = lst._0;
 var r = lst._1;
 return (function() {
 if((p(x))) {
 return new Cons(x, (listFilter(p, r)));
 } else {
 return listFilter(p, r);
 }
 })();
 } else if(lst instanceof Nil) {
 return new Nil();
 }
 })();
};

Figure 2. The compiled higher-order list functions. We can see the lightweight
JavaScript output.

router.get("/", function(request) {
 Users.get(request.params.name, function(error, user) {
 if(error) return fail(error);
 Posts.find(user.id, function(error, posts) {
 if(error) return fail(error);
 Friends.find(user.id, function(error, friends) {
 if(error) return fail(error);
 render(posts, friends);
 });
 });
 });
});

Figure 3. Made-up node.js example. This illustrates “callback hell.”

IC-16-03-Funw.indd 5 3/15/12 4:34 PM

The Functional Web

6 www.computer.org/internet/ IEEE INTERNET COMPUTING

This code looks like it would be syn-
chronous in an imperative language.
What we’ve actually made is a sequence
of two asynchronous requests. When
one finishes, the next will be fired.

With the previous code, we’ve
built up a big promise and can get
out the end result by adding a final
“done” callback:

requests.done (\result ->
 console.log result
)

All the previous code will compile
into JavaScript that has nested, asyn-
chronous callbacks (see Figure 4).

Modules
Recently, I’ve been working on mod-
ules. The module support is designed
to unify the many module standards
the JavaScript community has created,

including CommonJS Modules/1.0,
Asynchronous Module Definitions
(AMD), and browser-based globals.

Whenever you compile a mod-
ule, you generate a .roym file. This
module descriptor contains all of the
type information for the compiled
code. For example, the Roy code

let obj = {x: 1, y: 2,
t: "test"}

export obj

generates the following module
descriptor:

obj: {x: Number, y: Number,
t: String}

We can then import the module:

import "./module"
module.obj

The import built-in loads the exter-
nal module descriptor without the
code and can then type-check the
rest of the program.

In node.js mode, the program will
compile to

var module = require
("./module");

module.obj;

In browser mode, the program will
compile to:

(function() {
module.obj;
})();

Future
One plan I have for Roy is to imple-
ment lenses at the language level.
Lenses let you compose immutable
getters and setters:

.property: Lense {property:
#a) #a

get: Function(Lense #a #b,
#a, #b)

Languages such as Haskell and
Scala don’t currently have core
support for lenses, so developers
must write some amount of boiler-
plate to use them. Lenses will help
developers write immutable pro-
grams, but it might be necessary
to write mutable code for perfor-
mance reasons. Roy itself doesn’t
have any form of mutation —
though you can easily call out to
JavaScript code. That’s a prob-
lem, because code with muta-
tion is arguably the hardest type
of code to reason about and cor-
rectly write. This is an area in
which types would be even more
important.

To combat performance concerns,
Roy will eventually have a reference
type allowing mutation:

let x: Ref Number = newRef 100
console.log (1 + get x)

var deferred = {
 "return": function(x) {
 return $.when(x);
 },
 "bind": function(x, f) {
 var dfd = $.Deferred();
 x.done((function(val) {
 return f(val).done((function(val2) {
 return dfd.resolve(val2);
 }));
 }));
 return dfd.promise();
 }
};
var requests = (function(){
 var __monad__ = deferred;
 return __monad__.bind($.ajax("documents/hello.txt"),

function(text1) {
 return __monad__.bind($.ajax("documents/world.

txt"), function(text2) {
 return __monad__.return(text1 + text2);
 });
 });
})();
requests.done((function(result) {
 return console.log(result);
}));

Figure 4. Asynchronous, monadic computation compiled to JavaScript
callbacks.

IC-16-03-Funw.indd 6 3/15/12 4:34 PM

Roy

MAY/JUNE 2012 7

The JavaScript output will be very
lightweight:

var x = 100;
console.log(1 + x);

Another feature I’d like is the
ability to generate type-safe bind-
ings to Web browser specifications.
The W3C has worked on providing
new specifications with definitions
written in the Web Interface Descrip-
tion Language (Web IDL; www.
w3.org/TR/WebIDL/). The language
looks like the following:

// Introduced in DOM Level 2:
[Callback]
interface EventListener
{
 void handleEvent(in Event evt);
};

We could eventually convert this into
something like this:

type EventListener
= {handleEvent:
Function(Event, Unit)}

Roy could then automatically support
static typing of new W3C specifications.

I’d like to get Roy to a stage where
I can rewrite Roy in Roy. I’ve found
many bugs that Roy’s type system
would have easily caught while I’ve
been working on it. It’s also particu-
larly important for a compiler to be
correct.

I had the chance to talk to Simon
Peyton-Jones of Microsoft Research —
a key contributor to the design of the
Haskell programming language and
lead designer of the Glasgow Haskell
Compiler (GHC) — in December 2011.
One of his ideas was to make a type
system that could generate runtime
errors for typed code, if asked to. The
idea is that sometimes a type error
doesn’t mean that your whole pro-
gram is incorrect (for example, code
might not be reachable). The compiler
shouldn’t prevent you from running it.

If I implemented this in Roy,
we’d be able to write a Roy program
like this:

console.log ("Hello!" + 2)

We’d get a similar warning on the
command-line

WARNING: Line 1: Type error:
String is not Number

And the JavaScript would have a
similar runtime exception:

console.log(function() {
 throw new Error("Line 1:

Type error: String is
not Number");

}());

R oy’s future looks bright. The con-
tributors will be working hard

during 2012 to try and get it ready for
production systems. You can follow
Roy’s progress on Twitter at http://twitter.
com/roylang js, and can f ind Roy
repositories at https://bitbucket.org/
puffnfresh/roy or https://github.com/
pufuwozu/roy. Hopefully you’ll join
in and help push the statically typed
and functional Web forward!

Brian McKenna is a Java Developer with

At lassian. Contact him at br ian@

brianmckenna.org or via his blog at

http://brianmckenna.org.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-16-03-Funw.indd 7 3/15/12 4:34 PM

