
FUNCTIONAL
PROGRAMMING

WHAT ARE
FUNCTIONS?

▸ A relation from a set to a set
{(true, false), (false, true), (false, false)}
▸ One output object for every input

{(true, false), (false, true)}

ACTUAL
FUNCTIONS

boolean not(boolean b) {
 return !b;
}

String hello(String s) {
 return "Hello " + s;
}

NOT
FUNCTIONS

System.out.println("Hello world");

System.getTimeMillis();

x = x + 1;

boolean update(int j) {
 i += j;
 return j + 1;
}

... functional programming is a
restriction on how we write
programs, but not on what
programs we can express.

— Rúnar Bjarnason and Paul Chiusano, Functional
Programming in Scala, 2014

EQUATIONAL
REASONING

main :: IO ()
main = print $ sum [1, 2, 3]

sum :: [Int] -> Int
sum = foldl (+) 0

foldl :: (Int -> Int -> Int) -> Int -> [Int] -> Int
foldl f z xs = go z xs
 where go z [] = z
 go z (x:xs) = go (f z x) xs

main :: IO ()
main = print $ sum [1, 2, 3]

sum :: [Int] -> Int
sum xs = go 0 xs
 where go z [] = z
 go z (x:xs) = go (z + x) xs

main :: IO ()
main = print sum'

sum' :: Int
sum' = go 0 [1, 2, 3]
 where go z [] = z
 go z (x:xs) = go (z + x) xs

main :: IO ()
main = print sum'

sum' :: Int
sum' = go (((0 + 1) + 2) + 3) []
 where go z [] = z

main :: IO ()
main = print sum'

sum' :: Int
sum' = (((0 + 1) + 2) + 3)

main :: IO ()
main = print sum'

sum' :: Int
sum' = 6

main :: IO ()
main = print 6

NOT
EQUATIONAL
REASONING

val x = { println("Hello"); 1 }
x + x

// Hello
// 2

{ println("Hello"); 1 } +
 { println("Hello"); 1 }

// Hello
// Hello
// 2

PRINCIPLE OF
COMPOSITIONALITY

Meaning of a complex statement is the combination of
the meanings of its parts.

COMPROMISING

Can we write partially functional programs?

TOOLS

▸ Haskell
▸ ML
▸ Scala
▸ F#

GO WRITE FUNCTIONS!

