FUNCTIONAL



WHAT ARE
FUNCTIONS?




relation
{(true, false), (false, true), (false, false)}
One
{(true, false), (false, true)}



ACTUAL
FUNCTIONS




boolean not(boolean b) {
return !b;

}

String hello(String s) {
return "Hello " + s;

}



NOT
FUNCTIONS




System.out.println("Hello world");
System.getTimeM1illis();
X =X + 1,
boolean update(int j) {
1 += 3,

return j + 1;

}



... juitetional programmting is a
restrdction on oW we wite
programts, but not on what

DIOQFOILS WE, COIL EXPIESS.




EQUATIONAL
REASONING




main :: IO ()
main = print $ sum [1, 2, 3]

sum :: [Int] -> Int
sum = foldl (+) O

foldl :: (Int -> Int -> Int) -> Int -> [Int] -> Int
foldl f z xs = go z xs

go z [] =z

go z (x:xs) = go (f z x) xs



main :: I0 ()
main = print $ sum [1, 2, 3]

sum :: [Int] -> Int
sum Xs = go 0 xs
go z [] = z
g0 Zz (X:Xs) = go (z + X) Xs



main :: IO ()
main = print sum’

sum' :: Int
sum' = go 0 [1, 2, 3]
where go z [] = z
g0 Zz (X:Xs) = go (z + X) Xs



main :: IO ()
main = print sum’

sum’ :: Int
sum' = go (((0 + 1) + 2) + 3) []
where go z [] = z



main :: IO ()
main = print sum’

sum' :: Int
sum' (((0O + 1) + 2) + 3)



main :: IO ()
main = print sum’

sum' :: Int
sum'’ 6



main :: IO ()
main = print 6



NOT
EQUATIONAL
REASONING



val x = { println("Hello"); 1 }
X + X

// Hello
/] 2



{ println("Hello"); 1 } +
{ println("Hello"); 1 }

// Hello

// Hello

/] 2



PRINCIPLE OF
COMPOSITIONALITY




Meaning of a complex statement is the combination of
the meanings of its parts.



COMPROMISING



Gan we write partially functional programs?






> Haskell
» ML

» Scala
> [#



all WRITE FUNCTIONS!




