
LEARN DEPENDENTLY-
TYPED PROGRAMMING

WITH IDRIS

WHO I AM

▸ @puffnfresh
▸ Tiny contributor to Idris (18 commits)
▸ Played with dependent types for 2 years
▸ Been doing Idris for 6 months

https://twitteer.com/puffnfresh

ASSUMPTIONS

▸ Small experience with Haskell
▸ Have an install of Idris (can be tricky)

$ brew install ghc cabal-install
$ cabal update
$ cabal install alex
$ cabal install idris

OUTLINE

1. Overview of dependent types and Idris
2. Work through exercises, I lead
3. Work through exercises, I help

MOTIVATION

Bad news: most software
cannot be reasoned about

— Paul Phillips

▸ Curry-Howard; programs are proofs
▸ Let's make our proofs interesting

▸ Therefore let's use a powerful type system

MISCONCEPTIONS

▸ Idris is harder than Haskell
▸ Dependent types are hard

DEPENDENT TYPES
EVERYTHING IS A TERM

isIdris : Bool
isIdris = True

one : Nat
one = if isIdris then S Z else Z

StringList : Type
StringList = if isIdris then List Char else Int

▸ Types and kinds are values in universes
▸ Types can depend on values

▸ Free polymorphism, type constructors

the : (t : Type) -> (x : t) -> t
the _ a = a

one : Nat
one = the Nat Z

id1 : {t : Type} -> (x : t) -> t
id1 {t} a = a

id2 : (x : t) -> t
id2 a = a

id3 : t -> t
id3 a = a

Option : Type -> Type
Option = Maybe

TOTALITY

$ idris --total
$ idris --warnpartial

%default total

total plusOne : Nat -> Nat
plusOne Z = S Z
plusOne (S n) = S (S n)

I am often asked ‘how do I
implement a server as a

program in your
terminating language?’

— Conor McBride

I reply that I do not: a
server is a coprogram in a

language guaranteeing
liveness

— Conor McBride

▸ We always make progress
▸ Watch out for the totality checker!

▸ Church-Rosser theorem
▸ Evaluation is really normalisation!

▸ Can still do it all!

EQUALITY

data (=) : a -> b -> Type where
 refl : x = x

x : 1 = 1
x = refl

y : 1 + 1 = 2
y = refl

x : {a : Nat} -> a - a = Z
x {a=Z} = refl
x {a=S k} = x {a=k}

y : {a : Nat} -> a - a = Z
y {a} = replace {P = \x => (a - x = Z)}
 (plusZeroRightNeutral a)
 (minusPlusZero a Z)

x : {a : Nat} -> a - a = Z
x = ?xproof

xproof = proof
 intros
 rewrite (minusPlusZero a Z)
 rewrite (plusZeroRightNeutral a)
 trivial

▸ The problem of dependent types
▸ Values are unified

▸ Checked for syntactic/term equality

WHY IDRIS?

▸ LLVM, C, Java, JS backends
▸ FFI

▸ Lots of syntactic sugar
▸ Tactic rewriting

▸ Allows more lying/cheating
▸ REPL, editor modes, doc tools

HOW TO IDRIS

▸ Idris Tutorial
▸ Idris library docs
▸ Idris library source

▸ Beginning Haskell: a Project Based
Approach

LET'S GO

▸ printf
▸ Equality proofs
▸ Verified algebra
▸ Vector filtering

http://goo.gl/gfCJne

http://goo.gl/gfCJne

