
Functional programming and
Nix

for reproducible, immutable infrastructure

Nix

Functions and packaging

Functions and operating systems

Development shells

Docker without Dockerfiles

Agenda

Nix
Functional programming for infrastructure

Nix

History

Support

History
Functions: same input, same output 12th century

“Nix: A Safe and Policy-Free System for Software
Deployment” Eelco Dolstra 2004

“NixOS: A Purely Functional Linux
Distribution” Eelco Dolstra 2008

I started using it 2014Alternatives

Use cases

Nix

History

Support

Support
Nix, programming language

Nix, package manager
● Linux
● macOS
● WSL & WSL2

NixOS, Linux operating system

NixOps, deployment tool
Alternatives

Use cases

Nix

History

Support

Alternatives
Divergent
Manual configuration
Shell scripts
apt, yum, pacman

Convergent
Puppet, Chef, Ansible

Congruent
Docker
Guix

Alternatives

Use cases

Time

State

Divergent

Time

State

Convergent

Time

State

Congruent

● Cross-compiling
● Virtual machines (Linux, Windows)
● Automated GUI/service tests
● chroot environments
● AppImage packages
● RPM and Deb packages
● Continuous integration
● Development shells
● Docker images

Nix

History

Support

Use cases

Alternatives

Use cases

Package management
As functions

Package
management

Packages

Package
Build inputs
Dependencies
Sources
Configuration

Build outputs
Artifacts

Build definitions
Steps to create artifact from inputs

Expressions

Outputs

Derivations

Package A

Package B

Package C

Package D

● Dependencies
● Build steps
● Artifact

Package
management

Packages

Expressions
Nix programming language only has expressions

Build inputs are values

Use functions to define the steps

Expressions

Outputs

Derivations

mkDerivation {

 name = "hello-file";

 buildCommand = "

 echo 'Hello world' > $out

 ";

}

Package
management

Packages

Expressions

Outputs

Derivations

Package
management

mkDerivation {

 name = "hello-file";

 buildInputs = [hello];

 buildCommand = "

 hello > $out

 ";

}

Packages

Expressions

Outputs

Derivations

runCommand "hello-file" {

 buildInputs = [hello];

} "hello > $out"

Package
management

Packages

Expressions

Outputs

Derivations

Package
management

Packages

Derivations
A tree representing the build to run

No more functions, only serialised values

nix-instantiate

Expressions

Outputs

Derivations

$ nix-instantiate hello-file.nix

/nix/store/sn8i-hello-file.drv

Package
management

Packages

Expressions

Outputs

Derivations

"outputs": {

 "out": {

 "path": "/nix/store/jr4s-hello-file"

 }

}

"inputSrcs": [

 "/nix/store/9krl-default-builder.sh"

]

Package
management

Packages

Expressions

Outputs

Derivations

"inputDrvs": {

 "/nix/store/5gpb-stdenv-linux.drv": [

 "out"

],

 "/nix/store/ccna-bash-4.4-p23.drv": [

 "out"

],

 "/nix/store/sddw-hello-2.10.drv": [

 "out"

]

}

Package
management

Packages

Expressions

Outputs

Derivations

"platform": "x86_64-linux"

"builder":

"/nix/store/b9p7-bash-4.4-p23/bin/bash"

"args": [

 "-e",

 "/nix/store/9krl-default-builder.sh"

]

Package
management

Packages

Expressions

Outputs

Derivations

"env": {

 "buildCommand": "hello > $out",

 "buildInputs": "/nix/store/gdh8-hello-2.10",

 "builder":

"/nix/store/b9p7-bash-4.4-p23/bin/bash",

 "name": "hello-file",

 "out": "/nix/store/jr4s-hello-file",

 "outputs": "out",

 "passAsFile": "buildCommand",

 "stdenv": "/nix/store/r23m-stdenv-linux",

 "system": "x86_64-linux"

}

Package
management

Packages

Expressions

Outputs

Derivations

Package
management

Packages

Outputs
Files stored at hash of the derivation

Purity is same derivation should give same output

Can be checked for purity by building many times

Or we can use a chroot

Caching builds becomes trivial

nix-store --realise

Expressions

Outputs

Derivations

$ nix-store --realise /nix/store/sn8i-hello-file.drv

/nix/store/jr4s-hello-file

$ cat /nix/store/jr4s-hello-file

Hello, world!

Package
management

Packages

Expressions

Outputs

Derivations

Operating systems
As functions

{

 services.openssh.enable = true;

 virtualisation.docker.enable = true;

 users.extraUsers.brian = {

 uid = 1000;

 extraGroups = ["wheel" "docker"];

 };

}

Operating
systems

Configuration

Generations

Operation
systems

Configuration

Generations

Generations
If we change configuration we build a new profile

A profile contains kernel, systemd configuration,
/etc files and a directory to be placed on $PATH

Profiles are registered as generations

Old generations can be collected

Generations are shown at boot

Image; MichaelLindman (level1techs.com)

Development shells
Using functions

$ nix-shell -p python

$$ which python

/nix/store/8818-python-2.7.11/bin/python

$ cd myproject

$ nix-shell

install direnv

$ cd myproject

Development
shells

Usage

Configuration

mkDerivation {

 name = "amkt-env";

 buildInputs = [

 nodejs-8_x

 yarn

 jdk

 which

 curl

 git

 flow

] ++ optionals isLinux [firefox];

}

Development
shells

Usage

Configuration

Docker as functions
No Dockerfiles

FROM alpine

RUN apk add --update cowsay

CMD ["/bin/cowsay", "hello"]

EXPOSE 8080

Docker as
functions

Dockerfile

Nix

Docker as
functions

Dockerfile

Nix

Dockerfile
What’s the version of Cowsay?

What’s the version of Perl?

What’s the version of libc?

What’s the version of Alpine?

dockerTools.buildImage {

 name = "cowsay-hello";

 contents = [cowsay];

 fromImage = alpine;

 config = {

 Cmd = ["/bin/cowsay" "hello"];

 ExposedPorts = {

 "8080/tcp" = {};

 };

 };

}

Docker as
functions

Dockerfile

Nix

One tool for CI, dev and prod.
Known versions of everything.
All reproducible.

Functional infra

Thank you!

Functions

Simplicity

Reuse

Simplicity
Same inputs always give same output

Can always inline and extract expressions

Evaluation is substitution

Functions

Simplicity

Reuse

If we see same code, we can always extract it out

Using code is just using functions

Reuse

Agenda item 1

Agenda item 2

Agenda item 3

Agenda item 4

Agenda item 5

Agenda item 6

Agenda

Highlight sections

As you introduce them

Hold *shift* and drag the bar

Use *Distribute* tools

Found under *Arrange*

In the menu above

Agenda

Talk Title
Subtitle

Talk Title
Subtitle

Alternate agenda option

Alternate agenda option

Chapter Titles
Chapter subtitles should be two lines or less

super awesome things

This is a big statement slide.
Use dark background for bolder
points.

This is a big statement slide.
Use dark background for bolder
points.

This is a big statement slide.
Use light background for
lighter points.

This is a big statement slide.
Use dark background for bolder
points.

Source Book, Source Author, Other Relevant Info

This is a reference point slide.
Likely will be from a site, book,
talk, etc.

Source Book, Source Author, Other Relevant Info

This is a reference point slide.
Likely will be from a site, book,
talk, etc.

This is a quote slide.
Keep it tweetable.

AUTHOR

If you can’t explain it
simply, you don’t
understand it well enough.

ALBERT EINSTEIN

Can be used
as pro/con,
hypothesis/
finding, etc.

Use when
explaining

two sides of
a point

List out

The qualities

of the two

Different sides

Use another

Slide type

If you want to point out

The similarities

List out

The qualities

of the two

Different sides

Use another

Slide type

If you want to point out

The similarities

Big statement
with support

Talking point
Supporting info for talking point.
Use no more than two lines.

Talking point
Manage audience focus by placing
bar beneath talking point.

Talking point
Stay consistent with using the
light or dark throughout the related
big statement.

Big statement
with support

Spacing
Hold down *Shift* to drag when
moving the bar to make sure it
stays properly aligned.

Please remember
Using a lot of text on slides is like
reading your notes to your
audience. Not presenting.

Less is more
If you don’t need any of the points,
don’t use them. We don’t believe in
filler, baby!

Deeper info
slide title

Bold text

Normal text

Change text style

Move marker

Talking point
This is arguably the most text that should ever be
on one of your presentation slides.

Are they here to read or be engaged?
Don’t ask your audience to read/listen to your notes
and call it a presentation. Can send them a document.

Don’t need a third point?
Go ahead and delete!

"contentBylineItems": [

 {

"context": "addon",

"target": { "type": "inlinedialog" },

"tooltip": { "value": "Approvals" },

"icon": { "url": "/images/approval.png"

},

"name": { "value": "Page Approvals" },

"key": "byline-item",

"url":

"/approvals?contentId={content.id}"

 }

]

Code sample
with headers

Bold text

Normal text

Change text style

Move marker

Use illustrations
from the Graphic
Assets Deck to
support point.

Use illustrations
from the Graphic
Assets Deck to
support point.

Keep your
big points

short &
sweet

Talking point
Supporting text should be brief
and no longer than 4 lines.
Limit one talking point and
image per slide.

Talking point

Illustrations
Utilize spot illustrations

from our design site.

Separators
Use minimal grey bar to

separate points/illustrations.

Talking point

Usage
These slides have proven

to be versatile in use.

Remember
Keep the text light and focus

on presenting your points.

Don’t Obsess
The illustrations need only

to hint at your point.

Talking point

Rehearse
Rely on rehearsing

your voiceover
rather than writing.

Headline 3
Subtext type size is
optimized at 14 pt.

Focus
Use 4 points

maximum to keep
focus.

No worries
It’s OK if the subtext

lengths differ.

Before
Use to discuss points about how

something worked before.

After
Celebrate how fantastic things are now

that you’ve implemented changes.

Short title,
2 lines max

Point 1

Point 2

Point 4

Point 3

Talking point
Supporting text should be brief and no longer than
4 lines. Limit one talking point and image per slide.

Illustrations > text
Use illustrations to represent ideas rather
than always relying on text.

Talking point
Reinforcement of a big idea - use no more
than two lines of text here.

Less is more
If you don’t need any of the points, don’t use them.

"contentBylineItems": [

 {

"context": "addon",

"target": { "type": "inlinedialog" },

"tooltip": { "value": "Approvals" },

"icon": { "url": "/images/approval.png"

},

"name": { "value": "Page Approvals" },

"key": "byline-item",

"url":

"/approvals?contentId={content.id}"

 }

]

Large visual with title

Blank with title

Icon with text

Icons
You’ll find loads of custom
Atlassian icons at
atlassian.design available
to you in light and dark.

Download
Unlike with Keynote and
PPT versions, you’ll have
to download the icons,
illustrations, and meeples
to place in Google Slides.

Check back
We’ll let you know when
there are updates to our
custom icon set.

Icon with text

Icons
You’ll find loads of custom
Atlassian icons at
atlassian.design available
to you in light and dark.

Download
Unlike with Keynote and
PPT versions, you’ll have
to download the icons,
illustrations, and meeples
to place in Google Slides.

Check back
We’ll let you know when
there are updates to our
custom icon set.

Icon with text

Point 1
Use 4 points maximum to keep
audience focus.

Point 2
Any more than that is not intended
for presentation format.

Point 3
Need more? Please simply duplicate
the page and add “cont.” to your title.

Point 4
These slides will look cleaner and
more cohesive. We promise.

Icon with text

Point 1
Use 4 points maximum to keep
audience focus.

Point 2
Any more than that is not intended
for presentation format.

Point 3
Need more? Please simply duplicate
the page and add “cont.” to your title.

Point 4
These slides will look cleaner and
more cohesive. We promise.

We use a 50%
transparency N900 box
over a full-bleed photo

when using text overlays

Use a white gradient
on light photos to

create enough
contrast for your text

With the gradient object selected,
under *Format Shape / Shape
Options / Fill* you’ll find more

options to control the gradient.

Use a dark gradient
on dark photos to
create enough
contrast for your text

With the gradient object selected,
under *Format Shape / Shape
Options / Fill* you’ll find more
options to control the gradient.

Photographer; Source (example.flickr.com)

Use a

transparent
overlay over a

full-width photo

Place this column
wherever it makes

sense on the photo.
Select all and then
deselect the photo.

Hold *Shift* and
move.

Voiceover
points only

Point 1

Point 2

Point 3

Point 4

Concept Slides
Mission and Values overview – please do not change

team

We believe behind every great
human achievement, there is a team.

Our mission is to unleash the
potential in every team.

We believe behind every great
human achievement, there is a team.

Our mission is to unleash the
potential in every team.

team

Atlassian Values
They guide what we do, why we create, and who we hire.

Open company,
no bullshit

Play,
as a team

Build with heart &
balance

Be the change
you seek

Don’t #@!%
the customer

When work is ,
we unleash the full
potential of all teams.

go/shipit-#

ShipIt

Foundation

Giving Back

Confidential

Add a title, URL, or just remove this text

Add a title, URL, or just remove this text

Thank you!

Thank you!

